
A NOVEL SYNTHETIC APPROACH TO N-UNSUBSTITUTED B-LACTAMS

Fernando P. Cossío and Claudio Palomo* Kimika Organikako Departamendua, Kimika Fakultatea. Euskal Herriko Unibertsitatea. Altza. Donostia. Spain.

Abstract: A convenient simple route to N-unsubstituted β -lactams is described. Formation of unusual N-styryl- $-\beta$ -lactams is the key of the method.

Synthesis of N-unsubstituted β -lactams have received increased attention in the past few years and specially with the advent of the third generation of β -lactam antibiotics². We have been interested, therefore, in converting easily synthesized monocyclic β -lactams to the corresponding N-unsubstituted derivatives. Manhas and Bose³ have reported that permanganate oxidation of β -lactams of type <u>1</u> give the corresponding 4-carboxy-2-

-azetidinones <u>2</u>. We expected that under the same conditions β -lactams <u>3</u> afforded the N-unsubstituted β -lactams <u>5</u>. Unfortunately, the direct disconnection approach of these β -lactams <u>3</u> leads to an unusual synthon, the vinylamine <u>9</u> (Analysis 1). However, we have found that by means of a simple functional group interconversion, (Analysis 2), these β -lactams <u>3</u> can be easily synthesized from the readily available 2-phenylethanolamine <u>13</u>. In a typical example β -lactam <u>11a</u> was prepared by our method⁴, by reaction of phenoxyacetic acid <u>6</u> and the silylated Schiff base <u>12</u>, formed from anisaldehyde and 2-phenylethanolamine <u>13</u>, induced by phenyl dichlorophosphate reagent. Only a single isomer was obtained in 91% isolated yield (m.p. 175-177°C). Treatment of the resulting free hydroxy β -lactam <u>11a</u> or its trimethylsilyl ether with sodium iodide/trimethylchlorosilane⁵ (molar ratio substrate/NaI/ClSiMe₃ = 1/3/3) in refluxing acetonitrile for 25 min, gives the corresponding β -lactam <u>10a</u> in 88% yield. The crude iodo-

-compound was treated in benzene as solvent with 1,8-diazabicyclo (5.4.0)undec-7-ene (DBU) (molar ratio, substrate/DBU = 1/2) and the resulting mixture was refluxed for 30 min; then, the DBU.HI precipitated was filtered off. After work-up the crude N-styryl- β -lactam <u>3a</u> was "in situ" oxidized by means of potassium permanganate affording the N-unsubstituted β -lactam <u>5a</u> (40% overall yield <u>11+5</u> after recrystallization from ethanol, m.p. 167-168°C, NMR δ ppm: 8.5,5.6 and 5.1 J_{AB} = 5 Hz, J_{AX} = 2 Hz, J_{BX} \approx 0 Hz).

Analysis 1

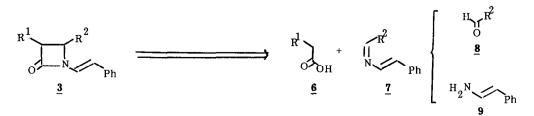
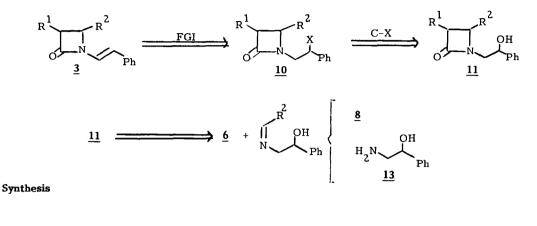
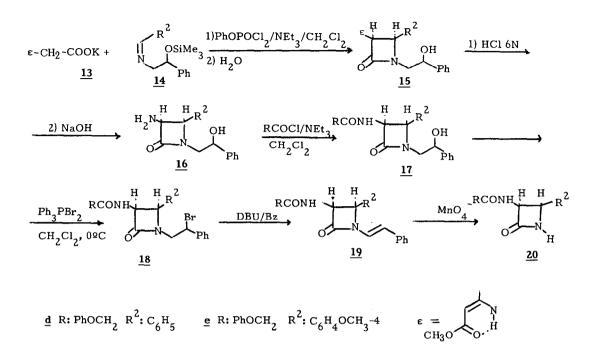



Table . β -lactams prepared

Compound ^g	% Yield	M.p.(ºC) ^a (lit.)	¹ H-N.M.R. data (8 ppm, CDCl ₃)
<u>10a</u>	85	146-150	7.4-6.6(m,14H,arom.); 5.3(d,J= 5 Hz,1H,COCH); 5.4-4.8(m,1H,CHBr) 5.1(d,J= 5 Hz,1H,NCH); 4.3-3.4(m,2H,CH ₂); 3.7(s,3H,OCH ₃)
<u>3a</u>	90	168-171	7.4-6.7(m,15H,=CH,arom.); 5.8(d,J= 14 Hz,1H,=CH); 5.4(d,J= 5 Hz, 1H,CH); 5.2(d,J= 5 Hz,1H,CH); 3.7(s,3H,OCH ₃)
<u>5a</u>	62	165-166 (166-167) b	see text
<u>10b</u>	86	184-185	7.3-6.5(m,15H,arom.); 5.4(d,J= 5 Hz,1H,CH); 5.1(d,J= 5 Hz,1H,CH); 5.5-4.8(m,1H,CHBr); 4.4-4.0,3.7-3.2(m,2H,CH ₂ Br)
<u>3b</u>	98	160-164	7.3-6.6(m,16H,arom,=CH); 5.8(d,14H,=CH); 5.4(d,J= 5 Hz,1H,CH); 5.2(d,J= 5 Hz,1H,CH)
<u>5b</u>	77	174-176	7.3-6.4(m,11H,arom,NH); 5.4(dd,J= 2 Hz,J'= 5 Hz,1H,CH); 4.9(d,J= 5 Hz,1H,CH)
<u>10c</u>	64	193-196	7.6-6.5(m,13H,arom.); 5.3(d,J= 5 Hz,1H,CH); 5.1(d,J= 5 Hz,1H,CH); 5.5-4.9(m,1H,CHBr); 4.5-3.4(m,2H,CH ₂ CBr); 3.6(s,3H,OCH ₃)
<u>3c</u>	94 ^c	syrup	7.6-6.5(m,14H,arom,=CH); 5.9(d,J= 14 Hz,=CH); 5.5(d,J= 5 Hz,1H, CH Z); 5.2(s_b ,2H,CH E; 1H,CH Z); 3.7(s_3 H,OCH ₃ E); 3.5 (s_5 3H, OCH ₃ Z)
<u>5c</u>	40 ^C		8.3(s _b ,1H,NH); 7.5-6.3(m,8H,arom.); 5.1(dd,J= 5 Hz, J'= 2 Hz,1H,CH, Z); 4.7(d,J= 2 Hz,1H,CH E); 4.6(d,J= 2 Hz,1H,CH E); 4.5-4.7(unresolved signal,1H,CH Z); 3.4(s,3H,OCH ₃ E); 3.2(s,3H,OCH ₃ Z)
<u>17d</u>	₅₀ d	142-144	7.3-6.4(m,16H,arom,NH); 5.5(dd,J= 5 Hz,J'= 10 Hz,1H,CHCO); 4.8 d,J= 5 Hz,1H,CH); 5.1-4.7(m,1H,CH); 4.2(d,J= -14 Hz,1H,OCHCO); 3.9(d,J= -14 Hz,1H,OCHCO); 4.0-2.9(m,2H,NCH ₂)
<u>19d</u>	64 ^e	165-167	7.6-6.3(m,17H,arom,NH,=CH); 5.8(d,J= 16 Hz,1H,=CH); 5.6(dd,J= 5 Hz,J'= 10 Hz,1H,CHCO); 5.2(d,J= 5 Hz,1H,CH); 4.3(d,J= -14 Hz,1H, OCHCO); 4.0(d,J= -14 Hz,1H,OCHCO)
<u>20d</u>	80	134-135 (134-136) f	7.3-6.4(m,12H,arom,NH,NH); 5.6(dd,J= 5 Hz,J'= 10 Hz,1H,CH), 5.0 d,J= 5 Hz,1H,CH); 4.3(d,J= - 14 Hz,1H,OCHCO); 4.0(d,J= - 14 Hz, 1H,OCHCO)
<u>17e</u>	47 ^d	128-130	7.4-6.5(m,15H,arom,NH); 5.5(dd,J= 5 Hz,J'= 10 Hz,1H,CHCO); 4.8 d,J= 5 Hz,1H,CH); 5.2-4.7(m,1H,CH); 4.3(d,J= - 14 Hz,1H,OCHCO); 4.2(d,J= - 14 Hz,1H,OCHCO); 3.7(s,3H,OCH ₃); 4.3-2.9(m,2H,NCH ₂); 2.2(s _b ,1H,OH)
<u>19e</u>	53 ^e	146-147	7.3-6.5(m,16H,arom,NH,=CH); 5.8(d,J= 16 Hz,1H,=CH); 5.7(dd,J= 5 Hz,J'= 10 Hz,1H,CHCO); 5.2(d,J= 5 Hz,1H,CH); 4.3(d,J=-14 Hz,1H, OCHCO); 4.1(d,J=-14 Hz,1H,OCHCO); 3.7(s,3H,OCH ₃)
<u>20e</u>	75	154-155	7.3-6.4(m,11H, arom,NH,NH); 5.5(dd,J= 5 Hz,J'= 10 Hz,1H,CH); 4.9 (d,J= 5 Hz,1H,CH); 4.3(d,J= -14 Hz,1H,OCHCO); 4.1(d,J= -14 Hz,1H OCHCO); 3.7(s,3H,OCH ₃)

a) A single spot was detected by the analysis except for 5c which showed two spot corresonding to Z and E isomers; b) A.K. Bose et al. <u>Tetrahedron Lett.</u> 3851 (1973); c) both isomers Z (25%) and E (75%) were obtained after work-up. The Z-E ratio was determined by pmr analysis; d) overall yield from the corresponding imine 14; e) overall yield from 17; f) A.K. Bose et al. <u>Synthesis</u> 543 (1979); g) for preparation of β -lactams 11 see ref. 4.


Analysis 2

$$\frac{R^{2}}{12} \xrightarrow{\text{R}^{1}: C_{6}H_{5}O} \xrightarrow{\underline{a}} R^{2}: 4-CH_{3}OC_{6}H_{4} \xrightarrow{\underline{b}} R^{2}: C_{6}H_{5} \xrightarrow{\underline{b}} R^{1}: Phthalimidoyl \xrightarrow{\underline{c}} R^{2}: 4-CH_{3}OC_{6}H_{4} \xrightarrow{\underline{b}} R^{2}: C_{6}H_{5} \xrightarrow{\underline{b}} R^{1}: Phthalimidoyl \xrightarrow{\underline{c}} R^{2}: 4-CH_{3}OC_{6}H_{4}$$

i: ClsiMe₃/NEt₃/CH₂Cl₂/r.t.; ii: R¹CH₂COOH/NEt₃/PhOP(O)Cl₂; iii: H₂O;
iv: ClsiMe₃/NEt₃/CH₃CN/r.t.; v:NaX/ClsiMe₃/reflux; vi:DBU/Bz/reflux; vi:DB

An alternative analogous procedure can be also developed from the corresponding bromides $\underline{10}(X:Br)$, thus, treatment of β -lactam $\underline{11}$ with phosphorus tribromide molar ratio 1:2, in refluxing benzene for 15 min affords the corresponding bromide $\underline{10}$ in 60-85% yield. Dehydrobromination of $\underline{10}$ by means of DBU in the same solvent gave the expected N-styryl β -lactam $\underline{3}$ in 95% yield. Selected examples were prepared by this method as shown in the Table. It is worthy of note that, Schiff bases $\underline{12}$ involving a bulky silyl ether and phenyl groups⁶ allows an stereospecific formation of β -lactams $\underline{11}$ as precursors of the N-unsubstituted β -lactams $\underline{5}$.

The wide utility of our method is exemplified by the synthesis of 3-phenoxyacetamido-4-phenyl-2-azetidinone, a compound reported to show anti- β -lactamase activity⁷; thus, the potassium salt of (α -methyl- β -methoxycarbonyl)-vinylaminoacetic acid <u>13</u> was allowed to react with phenyl dichlorophosphate⁴ and triethylamine in the presence of the corresponding trimethylsiloxy Shiff base <u>14</u> to form the corresponding α -vinylamino- β --lactam <u>15</u> as single stereoisomer. The vinylamino group of <u>15</u> was cleaved under mild acid condition to produce the free amino compound <u>16</u> which was directly acylated to <u>17</u>. When <u>17</u> was subjected to bromination with phosphorus tribromide very low yield of the corresponding bromo compound <u>18</u> was obtained and side reactions predominated. However, we have found that the desired bromides <u>18</u> can be obtained in high yields by treatment of <u>17</u> with triphenylphosphine dibromide⁸ at 0°C for 30 min in dichloromethane as solvent. Dehydrobromination of <u>17</u> by means of DBU and permanganate oxidation of the N-styryl- β -lactam <u>19</u> affords the N-unsubstituted β -lactam 20 in excellent yield. An additional important aspect is that analytically pure products

are obtained by very easy work-up in all sequences of the method. Therefore, the method described here may prove to be a useful alternative strategy to other recent methods developed for the same purpose 9^9 .

REFERENCES AND NOTES

- 1. Considered as Reagents and Synthetic Methods 50. This work was in part supported by GEMA S.A.--LIESSA S.A. (Spanish). A grant from Ministerio de Educación y Ciencia to F.P. Cossío is gratefully acknowledged. We are grateful to BASF S.A. (Spanish) for financial support (supply of triphenylphosphine).
- a) R.B. Morin, H. Gormán, Ed. "Chemistry and Biology of β-Lactam Antibiotics" Academic Press, Vol. 1, New York, 1982; b) P.G. Sammes, Ed. "Topics in Antibiotic Chemistry" Vol. 3, Ellis Howood Ltd. 1980;
 c) J. O'Sullivan, E.P. Abraham, "Antibiotics" Vol. IV, Ed. J.W. Corcoran, Springer-Verlag, Berlin, 1981.
- A.K. Bose, M.S. Manhas, S.G. Amin, J.C. Kapur, J. Kreder, L. Mukkavilli, B. Ram, J.E. Vicent, Tetrahedron Lett. 2771 (1979).
- 4. a) J.M. Aizpurua, I, Ganboa, F.P. Cossío, A. González, A. Arrieta, C. Palomo, Tetrahedron Lett. 25, 3905 (1984); b) A. Arrieta, F.P. Cossío, C. Palomo, Tetrahedron, 41, 1703 (1985).
- a) G.A. Olah, S.C. Narang, G.B. Gupta, R. Malhotra, J.Org.Chem. 44, 1247 (1979); b) idem, J.Org.Chem. 45, 1638 (1980).
- 6. We are continuing to study the scope of the method and its utility from bulky chiral Schiff bases 12 according to the observations of Manhas and Bose; see A.K. Bose, M.S. Manhas, J.M. Van der Veen, S.S. Bari, D.R. Wagle, **Tetrahedron Lett. 26**, 33 (1985) and ibid "Recent Advances in the Chemistry of β-Lactam Antibiotics" Third International Symposium, 1984, The Royal Society of Chemistry, Burlington House, London.
- 7. British Patent, 1301720 (1973); Chem. Abs. 76, 723809 (1973).
- 8. L.Horner, H.Oediger, H.Hoffman, Justus Liebigs.Ann.Chem. 626, 26 (1959).
- a) D.R.Kronenthal, C.Y.Han, M.K.Taylor, J.Org.Chem. 47, 2765(1982); b) A.K.Bose, M.S.Manhas, J.E.Vincent, K.Gala, I.F.Fernández, J.Org.Chem. 47, 4075(1982); c) T.Fukuyama, A.A. Laird, C.A. Schimdt, Tetrahedron Lett. 42, 4709 (1984).

(Received in UK 25 June 1985)